Role of transporters in the disposition of the selective phosphodiesterase-4 inhibitor (+)-2-[4-({[2-(benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenoxy]-propionic acid in rat and human

Drug Metab Dispos. 2007 Nov;35(11):2111-8. doi: 10.1124/dmd.107.016162. Epub 2007 Aug 8.

Abstract

The role of transporters in the disposition of (+)-2-[4-({[2-(benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenoxy]-propionic acid (CP-671,305), an orally active inhibitor of phosphodiesterase-4, was examined. In bile duct-exteriorized rats, a 7.4-fold decrease in the half-life of CP-671,305 was observed, implicating enterohepatic recirculation. Statistically significant differences in CP-671,305 pharmacokinetics (clearance and area under the curve) were discernible in cyclosporin A- or rifampicin-pretreated rats. Considering that cyclosporin A and rifampicin inhibit multiple uptake/efflux transporters, the interactions of CP-671,305 with major human hepatic drug transporters, multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2), breast cancer resistant protein (BCRP), and organic anion-transporting polypeptide (OATPs) were evaluated in vitro. CP-671,305 was identified as a substrate of MRP2 and BCRP, but not MDR1. CP-671,305 was a substrate of human OATP2B1 with a high affinity (Km = 4 microM) but not a substrate for human OATP1B1 or OATP1B3. Consistent with these results, examination of hepatobiliary transport of CP-671,305 in hepatocytes indicated active uptake followed by efflux into bile canaliculi. Upon examination as a substrate for major rat hepatic Oatps, CP-671,305 displayed high affinity (Km = 12 microM) for Oatp1a4. The role of rat Mrp2 in the biliary excretion was also examined in Mrp2-deficient rats. The observations that CP-671,305 pharmacokinetics were largely unaltered suggested that compromised biliary clearance of CP-671,305 was compensated by increased urinary clearance. Overall, these studies suggest that hepatic transporters play an important role in the disposition and clearance of CP-671,305 in rat and human, and as such, these studies should aid in the design of clinical drug-drug interaction studies.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism
  • Animals
  • Bile / metabolism
  • CHO Cells
  • Cell Line
  • Cricetinae
  • Cricetulus
  • Hepatocytes / cytology
  • Hepatocytes / metabolism
  • Humans
  • Male
  • Membrane Transport Proteins / genetics
  • Membrane Transport Proteins / metabolism*
  • Molecular Structure
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins / genetics
  • Multidrug Resistance-Associated Proteins / metabolism
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism
  • Organic Anion Transporters / genetics
  • Organic Anion Transporters / metabolism
  • Organic Anion Transporters, Sodium-Independent / genetics
  • Organic Anion Transporters, Sodium-Independent / metabolism
  • Phosphodiesterase 4 Inhibitors*
  • Phosphodiesterase Inhibitors / chemistry
  • Phosphodiesterase Inhibitors / metabolism
  • Phosphodiesterase Inhibitors / pharmacokinetics*
  • Propionates / chemistry
  • Propionates / metabolism
  • Propionates / pharmacokinetics*
  • Pyridines / chemistry
  • Pyridines / metabolism
  • Pyridines / pharmacokinetics*
  • Rats
  • Rats, Mutant Strains
  • Rats, Sprague-Dawley
  • Rats, Wistar
  • Transfection

Substances

  • 2-(4-(((2-(benzo(1,3)dioxol-5-yloxy)-pyridine-3-carbonyl)-amino)-methyl)-3-fluoro-phenoxy)-propionic acid
  • ABCB1 protein, human
  • ABCC2 protein, human
  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Abcc2 protein, rat
  • Membrane Transport Proteins
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins
  • Neoplasm Proteins
  • Organic Anion Transporters
  • Organic Anion Transporters, Sodium-Independent
  • Phosphodiesterase 4 Inhibitors
  • Phosphodiesterase Inhibitors
  • Propionates
  • Pyridines
  • SLCO2B1 protein, human
  • Slco1a4 protein, rat