High-resolution replication banding patterns were induced in prometaphase and prophase chromosomes of Xenopus laevis by treating kidney cell lines with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession. Up to 650 early and late replicating bands per haploid karyotype were demonstrated in the very long prophase chromosomes. This permits an exact identification of all chromosome pairs of X. laevis. Late replicating heterochromatin was located by analysing the time sequence of replication throughout the second half of S-phase. Neither heteromorphic sex chromosomes nor sex chromosome-specific replication bands were demonstrated in the heterogametic ZW females of X. laevis. A detailed examination of the BrdU/dT-labelled prometaphases and prophases revealed that the X. laevis chromosomes can be arranged in groups of four (quartets), most of which show conspicuous similarities in length, centromere position, and replication pattern. This is interpreted as further evidence for an ancient allotetraploid origin of X. laevis.