The thermal element of fever has been found to be beneficial in models of infectious disease. The contributions of fever-range temperatures to the efficacy of the adaptive immune response have only begun to be delineated. There is accumulating evidence that fever-range thermal stress bolsters primary immune surveillance of lymph nodes and Peyer patches by augmenting lymphocyte extravasation across specialized vessels termed high endothelial venules. Molecular mechanisms have recently come to light by which the thermal component of fever alone may promote lymphocyte trafficking, and thereby the probability of mounting a defense against microbial infection. Acquired knowledge of the molecular changes associated with thermal stress may allow for the development of novel therapies for a variety of disease processes.