Background: Infiltration, accumulation, and degranulation of eosinophils in the lung are hallmarks of active allergic asthma. The pulmonary response to inhaled allergen triggers the secretion of eosinophil chemoattractants and antiapoptotic cytokines, including GM-CSF, IL-3, IL-4, IL-5, and eotaxin, among others. We recently showed that in vitro Pin1 regulated eosinophil production of and response to GM-CSF.
Objective: We sought to determine the effect of Pin1 inhibition on pulmonary eosinophilia after allergen challenge.
Methods: The Pin1 inhibitor juglone (5-hydroxy-1,4-naphthoquinone) was administered to allergen-sensitized and allergen-challenged Brown Norway rats. Bronchoalveolar lavage fluid and lungs were assessed for inflammation, cytokine expression, and Pin1 activity.
Results: Juglone-treated rats showed a dramatic reduction (approximately 75%) in bronchoalveolar lavage fluid and pulmonary eosinophilia but no change in lymphocyte, monocyte/macrophage, or neutrophil numbers. GM-CSF and IL-5 expression were also significantly reduced, whereas Pin1-independent cytokines, such as eotaxin or IL-4, as well as housekeeping mRNAs and proteins, including actin, were unaffected by juglone. The eosinophils present in the lung in juglone-treated rats showed significantly greater apoptosis.
Conclusion: These data suggest that in vivo Pin1 blockade attenuates GM-CSF and IL-5 production and can selectively reduce eosinophilic allergic inflammation.
Clinical implications: Eosinophils can be selectively reduced by Pin1 blockade, despite allergen challenge.