RS-93427, a novel analog of prostacyclin, increased adenylate cyclase activity in human platelet membranes (EC50 = 42 nM) to approximately the same maximum level as that produced by prostacyclin (EC50 = 87 nM). The concentration-response curve for RS-93427 appeared to be monophasic. However, a selective prostaglandin D2 antagonist (BW A868C) significantly reduced the stimulation of adenylate cyclase produced by low concentrations of RS-93427 (3.2 to 32 nM). RS-93520, a stereoisomer of RS-93427, also stimulated adenylate cyclase activity but in a biphasic pattern. BW A868C reduced the activation produced by low concentrations of RS-93520 with a 100-fold shift in the response curve. Maximum stimulation by RS-93520 (4.5-fold) was less than that obtained with prostaglandin D2 (7.3-fold). Thus, the stimulation of adenylate cyclase activity by low concentrations of RS-93520 is due to an interaction with prostaglandin D2 receptors while the activation by RS-93427 is mediated by both prostacyclin and prostaglandin D2 receptors. Additional data in support of these conclusions was obtained when these prostaglandins were tested as inhibitors of ADP-induced platelet aggregation in the presence or absence of BW A868C. The potent stimulation of prostaglandin receptors with chimeric molecules provides some insight into the structural features required for receptor activation.