Apoptosis of murine lupus T cells induced by the selective cyclooxygenase-2 inhibitor celecoxib: molecular mechanisms and therapeutic potential

Int Immunopharmacol. 2007 Nov;7(11):1414-21. doi: 10.1016/j.intimp.2007.06.013. Epub 2007 Jul 24.

Abstract

Upregulation of cyclooxygenase (COX)-2 in T cells from patients with systemic lupus erythematosus (SLE) is associated with their resistance to functional inactivation (anergy) and to activation-induced cell death through apoptosis. It has been demonstrated that celecoxib, a selective COX-2 inhibitor, can enhance apoptosis of human lupus T cells. The present study was undertaken to investigate whether COX-2 expression is also upregulated in T cells from the lupus-prone BXBS strain of mice and if murine lupus is modified by celecoxib. COX-2 expression was detected in splenic T cells from 6 month-old male BXSB mice (murine lupus T cells) but not in T cells from 2 month-old male or 6-month-old female BXSB or in 6-month-old male C57BL/6 mice, indicating a strong correlation between COX-2 expression in T cells and lupus manifestation in mice. Celecoxib treatment induced apoptosis of murine lupus T cells in vitro, which was inhibited by z-VAD-fmk, a pan-caspase inhibitor. In the murine lupus T cells treated with celecoxib, procaspases 3 and 9, but not procaspase 8, were activated. In addition, celecoxib treatment decreased the mitochondrial membrane potential of murine lupus T cells. These data combine to suggest that celecoxib mainly uses the mitochondrial pathway rather than FADD pathway to trigger apoptosis of COX-2 expressing murine lupus T cells. Intragastric administration of celecoxib (40 mg/kg/day for 60 days) in 6-month-old male BXSB mice effectively limited the production of serum antibodies against dsDNA. Our data suggest that celecoxib may have a beneficial effect in treating autoimmune diseases such as SLE through inducing apoptosis of autoreactive T cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Antinuclear / blood
  • Apoptosis / drug effects*
  • Caspases / metabolism
  • Celecoxib
  • Cells, Cultured
  • Cyclooxygenase 2 Inhibitors / pharmacology
  • Cyclooxygenase 2 Inhibitors / therapeutic use
  • Immunoglobulin G / blood
  • Lupus Erythematosus, Systemic / drug therapy
  • Lupus Erythematosus, Systemic / enzymology
  • Lupus Erythematosus, Systemic / immunology*
  • Lupus Erythematosus, Systemic / pathology
  • Mice
  • Mice, Inbred Strains
  • Mitochondria / metabolism
  • Pyrazoles / pharmacology*
  • Pyrazoles / therapeutic use
  • Sulfonamides / pharmacology*
  • Sulfonamides / therapeutic use
  • T-Lymphocytes / cytology*
  • T-Lymphocytes / drug effects*
  • Time Factors
  • Up-Regulation

Substances

  • Antibodies, Antinuclear
  • Cyclooxygenase 2 Inhibitors
  • Immunoglobulin G
  • Pyrazoles
  • Sulfonamides
  • Caspases
  • Celecoxib