Accumulating evidence from both human lesion and functional neuroimaging studies appears to support the hypothesis that the cerebellum contributes to non-motor functions. Along similar lines, cognitive, affective and behavioural changes in psychiatric disorders, such as autism, schizophrenia and dyslexia, have been linked to structural cerebellar abnormalities. The aim of this special issue was to evaluate the current knowledge base after more than 20 years of controversial discussion. The contributions of the special issue cover the most important cognitive domains, i.e., attention, memory and learning, executive control, language and visuospatial function. The available empirical evidence suggests that cognitive changes in patients with cerebellar dysfunction are mild and clearly less severe than the impairments observed after lesions to neocortical areas to which the cerebellum is closely connected via different cerebro-cerebellar loops. Frequently cited early findings, e.g., with respect to a specific cerebellar involvement in attention, have not been replicated or might be confounded by motor or working memory demands of the respective attention task. On the other hand, there is now convincing evidence for a cerebellar involvement in the mediation of a range of cognitive domains, most notably verbal working memory. Verbal working memory problems may partly underlie the compromised performance of cerebellar lesion patients on at least some complex cognitive tasks. Although investigations have moved from anecdotical case reports to hypothesis-driven controlled clinical group studies based on sound methods which are complemented by state-of-the-art functional neuroimaging studies, the empirical evidence available so far does not yet allow a convincing theory of the mechanisms of a cerebellar involvement in cognitive function. Future studies are clearly needed to further elucidate the nature of the processes linked to cerebellar mediation of cognitive processes and their possible link to motor theories of cerebellar function, e.g., its role in prediction and/or timing.