Adaptive optics (AO) has been recently used for the development of ophthalmic devices. Its main objective has been to obtain high-resolution images for diagnostic purposes or to estimate high-order eye aberrations. The core of every AO system is an optical device that is able to modify the wavefront shape of the light entering the system; if you know the shape of the incoming wavefront, it is possible to correct the aberrations introduced in the optical path from the source to the image. The aim of this paper is to demonstrate the feasibility, although in a simulated system, of estimating and correcting an aberrated wavefront shape by means of an iterative gradient-descent-like software procedure, acting on a point source image, without expensive wavefront sensors or the burdensome computation of the point-spread-function (PSF) of the optical system. In such a way, it is possible to obtain a speed and repeatability advantage over classical stochastic algorithms. A hierarchy in the aberrations is introduced, in order to reduce the dimensionality of the state space to be searched. The proposed algorithm is tested on a simple optical system that has been simulated with ray-tracing software, with randomly generated aberrations, and compared with a recently proposed algorithm for wavefront sensorless adaptive optics.