Aim: The aim of the study was the electrophysiological evaluation of the cremasteric reflex after experimental testicular torsion.
Material and methods: Ten male Wistar rats were enrolled into the study. Genitofemoral nerve (GFN) motor conduction and cremasteric reflex (CR) responses were evaluated electrophysiologically after being subjected to anesthesia with intramuscular ketamin hydrochloride. Testicular torsion was performed by rotating the right testicle 720 degrees in a clockwise direction from a midscrotal incision. Electrophysiological evaluations were repeated in the early (30 minutes) and late (90 minutes) periods of testicular torsion. Subsequently, detorsion of the testicles was performed and electrophysiological recordings were completed after 60 minutes of detorsion. The CR was also evaluated clinically before each electrophysiological evaluation. The latency and duration of GFN motor conduction and CR responses was compared for base, early torsion, late torsion and detorsion recordings. Friedman's test for repeated measurements was used for statistical analysis.
Results: The CR, which was detected clinically before torsion and after detorsion, was not detected during torsion. When base, early torsion, late torsion and detorsion recordings were compared, there was no statistical difference with respect to both latency and duration of GFN motor conduction and CR responses (p > 0.05).
Conclusion: Although CR was not detected clinically during testicular torsion, the electrophysiological parameters of the reflex did not differ in the early and late periods of torsion in rats. The GFN motor conduction parameters also showed no differences. In conclusion, the absence of the CR after testicular torsion could not be confirmed by electrophysiological studies.