We demonstrate the technique of subsequent multitrack nonlinear imaging based on backscattered second-harmonic generation (B-SHG) and two-photon autofluorescence (TPA) to obtain large-area, high-contrast, submicron-resolution image ex vivo of esophageal stroma. Our findings show that this technique is effective in improving the B-SHG/TPA image contrast. It was found that the method can quantitatively obtain microscopic structural and biochemical information on stroma. Our work suggests that the technique has the potential to provide accurate and comprehensive information in determining the physiological and pathological states of the esophagus.