Strength weakening by nanocrystals in ceramic materials

Nano Lett. 2007 Oct;7(10):3196-9. doi: 10.1021/nl0718723. Epub 2007 Sep 14.

Abstract

A key question in nanomechanics concerns the grain size effects on materials' strength. Correct solution to this question is critical to design and tailor the properties of materials for particular applications. The full map of grain sizes-hardness/yield stress relationship in metals has been built. However, for ceramic materials, the similar studies and understandings are really lacking. Here we employed a novel technique to comparatively study the mechanical features of titanium dioxide (TiO(2)) with different crystallite sizes. On the basis of peak profile analysis of the X-ray diffraction data, we determined yield strength for nanocrystalline and bulk TiO(2). Our results reveal a remarkable reduction in yield strength as the grain size decreases from 30-40 microm to approximately 10 nm, providing the only evidence of a strength weakening by nanocrystals relative to their bulk counterparts. This finding infers an inverse Hall-Petch effect, the first of its kind for ceramic materials, and a dramatic strength weakening after the breakdown of classic Hall-Petch relation below a characteristic grain size.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ceramics / chemistry*
  • Computer Simulation
  • Crystallization / methods*
  • Elasticity
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Models, Chemical*
  • Models, Molecular*
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Particle Size
  • Stress, Mechanical
  • Surface Properties

Substances

  • Macromolecular Substances