Intercellular adhesion molecule 1 (ICAM-1) expression is down-regulated in the center of cutaneous varicella lesions despite the expression of proinflammatory cytokines such as gamma interferon and tumor necrosis factor alpha (TNF-alpha). To study the molecular basis of this down-regulation, the ICAM-1 induction of TNF-alpha was analyzed in varicella-zoster virus (VZV)-infected melanoma cells (MeWo), leading to the following observations: (i) VZV inhibits the stimulation of icam-1 mRNA synthesis; (ii) despite VZV-induced nuclear translocation of p65, p52, and c-Rel, p50 does not translocate in response to TNF-alpha; (iii) the nuclear p65 present in VZV-infected cells is no longer associated with p50 and is unable to bind the proximal NF-kappaB site of the icam-1 promoter, despite an increased acetylation and accessibility of the promoter in response to TNF-alpha; and (iv) VZV induces the nuclear accumulation of the NF-kappaB inhibitor p100. VZV also inhibits icam-1 stimulation of TNF-alpha by strongly reducing NF-kappaB nuclear translocation in MRC5 fibroblasts. Taken together, these data show that VZV interferes with several aspects of the immune response by inhibiting NF-kappaB binding and the expression of target genes. Targeting NF-kappaB activation, which plays a central role in innate and adaptive immune responses, leads to obvious advantages for the virus, particularly in melanocytes, which are a site of viral replication in the skin.