Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts

Clin Cancer Res. 2007 Sep 15;13(18 Pt 1):5426-35. doi: 10.1158/1078-0432.CCR-07-0674. Epub 2007 Sep 12.

Abstract

Purpose: Human T cells targeted to the B cell-specific CD19 antigen through retroviral-mediated transfer of a chimeric antigen receptor (CAR), termed 19z1, have shown significant but partial in vivo antitumor efficacy in a severe combined immunodeficient (SCID)-Beige systemic human acute lymphoblastic leukemia (NALM-6) tumor model. Here, we investigate the etiologies of treatment failure in this model and design approaches to enhance the efficacy of this adoptive strategy.

Experimental design: A panel of modified CD19-targeted CARs designed to deliver combined activating and costimulatory signals to the T cell was generated and tested in vitro to identify an optimal second-generation CAR. Antitumor efficacy of T cells expressing this optimal costimulatory CAR, 19-28z, was analyzed in mice bearing systemic costimulatory ligand-deficient NALM-6 tumors.

Results: Expression of the 19-28z CAR, containing the signaling domain of the CD28 receptor, enhanced systemic T-cell antitumor activity when compared with 19z1 in treated mice. A treatment schedule of 4 weekly T-cell injections, designed to prolong in vivo T-cell function, further improved long-term survival. Bioluminescent imaging of tumor in treated mice failed to identify a conserved site of tumor relapse, consistent with successful homing by tumor-specific T cells to systemic sites of tumor involvement.

Conclusions: Both in vivo costimulation and repeated administration enhance eradication of systemic tumor by genetically targeted T cells. The finding that modifications in CAR design as well as T-cell dosing allowed for the complete eradication of systemic disease affects the design of clinical trials using this treatment strategy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, CD19 / immunology*
  • Disease Models, Animal
  • Humans
  • Immunotherapy, Adoptive / methods*
  • Mice
  • Mice, Inbred Strains
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / pathology
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / therapy*
  • Receptors, Immunologic / genetics*
  • Receptors, Immunologic / immunology
  • Recombinant Fusion Proteins / genetics*
  • Recombinant Fusion Proteins / immunology
  • Retroviridae / genetics
  • T-Lymphocytes / immunology
  • T-Lymphocytes / transplantation*
  • Xenograft Model Antitumor Assays

Substances

  • Antigens, CD19
  • Receptors, Immunologic
  • Recombinant Fusion Proteins