The N-acylethanolamines (NAEs) and 2-arachidonoylglycerol (2-AG) are bioactive lipids that can modulate inflammatory responses and protect neurons against glutamatergic excitotoxicity. We have used a model of focal cerebral ischemia in young adult mice to investigate the relationship between focal cerebral ischemia and endogenous NAEs. Over the first 24 h after induction of permanent middle cerebral artery occlusion, we observed a time-dependent increase in all the investigated NAEs, except for anandamide. Moreover, we found an accumulation of 2-AG at 4 h that returned to basal level 12 h after induction of ischemia. Accumulation of NAEs did not depend on regulation of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D or fatty acid amide hydrolase. Treatment with the fatty acid amide hydrolase inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester; 1 mg/kg; i.p.) 1.5 h before arterial occlusion decreased the infarct volume in our model system. Our results suggest that NAEs and 2-AG may be involved in regulation of neuroprotection during focal cerebral ischemia in mice.