The objective of this study was to estimate genetic parameters for grass dry matter intake (DMI), energy balance (EB), and cow internal digestibility (IDG) in grazing Holstein-Friesian dairy cows. Grass DMI was estimated up to 4 times per lactation on 1,588 lactations from 755 cows on 2 research farms in southern Ireland. Simultaneously measured milk production and BW records were used to calculate EB. Cow IDG, measured as the ratio of feed and fecal concentrations of the natural odd carbon-chain n-alkane pentatriacontane, was available on 583 lactations from 238 cows. Random regression and multitrait animal models were used to estimate residual, additive genetic and permanent environmental (co)variances across lactations. Results were similar for both models. Heritability for DMI, EB, and IDG across lactation varied from 0.10 [8 days in milk (DIM)] to 0.30 (169 DIM), from 0.06 (29 DIM) to 0.29 (305 DIM), and from 0.08 (50 DIM) to 0.45 (305 DIM), respectively, when estimated using the random regression model. Genetic correlations within each trait tended to decrease as the interval between periods compared increased for DMI and EB, whereas the correlations with IDG in early lactation were weakest when measured midlactation. The lowest correlation between any 2 periods was 0.10, -0.36, and -0.04 for DMI, EB, and IDG, respectively, suggesting the effect of different genes at different stages of lactations. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix revealed considerable genetic variation among animals in the shape of the lactation profiles for DMI, EB, and IDG. Genetic parameters presented are the first estimates from dairy cows fed predominantly grazed grass and imply that genetic improvement in DMI, EB, and IDG in Holstein-Friesian cows fed predominantly grazed grass is possible.