Cell separation from peripheral blood was investigated using polyurethane (PU) foam membranes having 5.2 mum pore size and coated with Pluronic F127 or hyaluronic acid. The permeation ratio of hematopoietic stem cells (CD34(+) cells) and lymphocytes through the membranes was lower than for red blood cells and platelets. Adhered cells were detached from membrane surfaces using human serum albumin (HSA) solution after permeation of blood through the membranes, allowing isolation of CD34(+) cells in the permeate (recovery) solution. High-yield isolation of CD34(+) cells was achieved using Pluronic-coated membranes. This was because the Pluronic coating dissolved into the recovery solution at 4 degrees C, releasing adhered cells from the surfaces of the membranes during permeation of HSA solution through these membranes. Dextran and/or bovine serum albumin solutions were also evaluated for use as recovery solutions after blood permeation. A high recovery ratio of CD34(+) cells was achieved at 4 degrees C in a process using 20% dextran solution through PU membranes having carboxylic acid groups.