Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain

Magn Reson Med. 2007 Oct;58(4):786-93. doi: 10.1002/mrm.21387.

Abstract

Magnetization transfer (MT) imaging provides a unique method of tissue characterization by capitalizing on the interaction between solid-like tissue components and bulk water. We used a continuous-wave (CW) MT pulse sequence with low irradiation power to study healthy human brains in vivo at 3 T and quantified the asymmetry of the MT effects with respect to the water proton frequency. This asymmetry was found to be a difference of approximately a few percent from the water signal intensity, depending on both the RF irradiation power and the frequency offset. The experimental results could be quantitatively described by a modified two-pool MT model extended with a shift contribution for the semisolid pool with respect to water. For white matter, this shift was fitted to be 2.34 +/- 0.17 ppm (N = 5) upfield from the water signal.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / physiology*
  • Humans
  • Magnetic Resonance Imaging*
  • Protons
  • Water

Substances

  • Protons
  • Water