The Na(+)/H(+) exchanger (NHE) inhibitor cariporide has a cardioprotective effect in various animal models of myocardial ischemia-reperfusion. Recent studies have suggested that cariporide interacts with mitochondrial Ca(2+) overload and the mitochondrial permeability transition (MPT); however, the precise mechanisms remain unclear. Therefore, we examined whether cariporide affects mitochondrial Ca(2+) overload and MPT. Isolated adult rat ventricular myocytes were used to study the effects of cariporide on hypercontracture induced by ouabain or phenylarsine oxide (PAO). Mitochondrial Ca(2+) concentration ([Ca(2+)](m)) and the mitochondrial membrane potential (DeltaPsi(m)) were measured by loading myocytes with rhod-2 and JC-1, respectively. We also examined the effect of cariporide on the MPT using tetramethylrhodamine methyl ester (TMRM) and oxidative stress generated by laser illumination. Cariporide (1 microM) prevented ouabain-induced hypercontracture (from 40 +/- 2 to 24 +/- 2%, P < 0.05) and significantly attenuated ouabain-induced [Ca(2+)](m) overload (from 149 +/- 6 to 121 +/- 5% of the baseline value, P < 0.05) but did not affect DeltaPsi(m). These results indicate that cariporide attenuates the [Ca(2+)](m) overload without the accompanying depolarization of DeltaPsi(m). Moreover, cariporide increased the time taken to induce the MPT (from 79 +/- 11 to 137 +/- 20 s, P < 0.05) and also attenuated PAO-induced hypercontracture (from 59 +/- 3 to 50 +/- 4%, P < 0.05). Our data indicate that cariporide attenuates [Ca(2+)](m) overload and MPT. Thus these effects might potentially contribute to the mechanisms of cardioprotection afforded by NHE inhibitors.