Inflammation plays a critical role in the secondary degenerative response to spinal cord injury (SCI). The influx of inflammatory cells following SCI is preceded by the expression of specific chemoattractants, including chemokines. The chemokine CXCL10 is a potent T lymphocyte recruiter and has been strongly implicated in the pathology of many CNS disorders. We have previously demonstrated that CXCL10 exacerbates secondary degeneration by blocking the function of CXCL10 prior to SCI. Here we administered neutralizing antibodies against CXCL10 1 h after SCI in order to investigate the efficacy of this therapeutic intervention in abating histologic and functional deficit following acute SCI and further assess the functional role of CXCL10 in secondary degeneration. Neutralization of CXCL10 significantly reduced inflammation, apoptosis, neuronal loss and whole tissue loss. Notably, this therapeutic treatment also promoted revascularization of the injured spinal cord and functional recovery. These data suggest that anti-CXCL10 antibody treatment is a viable therapeutic strategy for acute SCI.