The complex mechanisms by which transforming growth factor beta (TGFbeta) regulate re-epithelialisation following injury of stratified epithelia are not fully understood. TGFbeta signals via binding to distinct receptors activating downstream effectors, including Smads which initiate transcription of target genes. However, studies have shown that TGFbeta can also signal independently of Smads through MAPK pathways, demonstrating the diversity of TGFbeta signalling. Connective tissue growth factor (CTGF) is strongly induced by and acts downstream of TGFbeta causing pathophysiology in tissues by inducing matrix deposition, conversion of fibroblasts into contractile myofibroblasts (e.g. dermis and corneal stroma) and stimulation of epithelial-to-mesenchymal transition (e.g. kidney and lung) all of which are known to cause fibrosis. However, a role for CTGF in epithelial cell function which does not involve direct contribution to fibrosis has not been demonstrated. We show for the first time that synthesis of CTGF in cultures of human corneal epithelial cells is induced by TGFbeta through the Ras/MEK/ERK MAPK signalling pathway and that this is required for re-epithelialisation to occur through cell migration. These data reveal a novel function for CTGF in the regulation of epithelial tissue repair beyond its established role in fibrosis, and further highlight the complexity of TGFbeta regulation of epithelial cell function.