Bleomycin-induced pulmonary fibrosis is attenuated by a monoclonal antibody targeting HER2

J Appl Physiol (1985). 2007 Dec;103(6):2077-83. doi: 10.1152/japplphysiol.00239.2007. Epub 2007 Oct 4.

Abstract

The importance of HER2/HER3 signaling in decreasing the effects of lung injury was recently demonstrated. Transgenic mice unable to signal through HER2/HER3 had significantly less bleomycin-induced pulmonary fibrosis and showed a survival benefit. Based on these data, we hypothesized that pharmacological blockade of HER2/HER3 in vivo in wild-type mice would have the same beneficial effects. We tested this hypothesis in a bleomycin lung injury model using 2C4, a monoclonal antibody directed against HER2 that blocks HER2/HER3 signaling. The administration of 2C4 before injury decreased the effects of bleomycin at days 15 and 21 after injury. HER2/HER3 blockade resulted in less collagen deposition (362.8 +/- 37.9 compared with 610.5 +/- 27.1 microg/mg; P = 0.03) and less lung morphological changes (injury score of 1.99 +/- 1.55 vs. 3.90 +/- 0.76; P < 0.04). In addition, HER2/HER3 blockade resulted in a significant survival advantage with 50% vs. 25% survival at 30 days (P = 0.04). These results confirm that HER2 signaling can be pharmacologically targeted to reduce lung fibrosis and remodeling after injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antibodies, Monoclonal / pharmacology*
  • Antibodies, Monoclonal / therapeutic use
  • Bleomycin
  • Collagen / metabolism
  • Disease Models, Animal
  • Lung / drug effects*
  • Lung / metabolism
  • Lung / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Pulmonary Fibrosis / chemically induced
  • Pulmonary Fibrosis / metabolism
  • Pulmonary Fibrosis / pathology
  • Pulmonary Fibrosis / prevention & control*
  • Receptor, ErbB-2 / antagonists & inhibitors*
  • Receptor, ErbB-2 / immunology
  • Receptor, ErbB-2 / metabolism
  • Receptor, ErbB-3 / metabolism
  • Signal Transduction / drug effects*
  • Time Factors

Substances

  • 2C4 antibody
  • Antibodies, Monoclonal
  • Bleomycin
  • Collagen
  • Erbb2 protein, mouse
  • Receptor, ErbB-2
  • Receptor, ErbB-3