The aim of this study was to evaluate the applicability and effects of mechanical vibration on body composition and mechanical properties of the arm in patients with spinal cord injury (SCI). For this purpose, ten volunteers with thoracic SCI were recruited. Measurements were performed before and after a period of treatment with mechanical vibration applied during forearm flexion in isometric condition. The subjects were tested performing forearm flexion (both right and left side) with increasing loads, corresponding to 5, 8, 10 and 15% of their own body weight. Average velocity (AV), average force (AF) and average power (AP) were calculated. The Functional Independence Measure was used to evaluate daily autonomy at baseline. Total body and segmental (arms) body composition, fat mass, fat-free mass, and bone mineral density, were studied by dual energy X-ray absorptiometry. Functional measurements (AV, AF, AP) and body composition were measured at three time points: after a medical examination and interview (T0); after an interval of 12 weeks without physical therapy or training (T1); and finally after a further 12-week period during which the patients performed segmental vibration exercise (T2). The results showed statistically significant increases in AV and AP on the right (dominant) side (p<0.05); AF also increased, but without the difference reaching statistical significance. Total body composition, did not change whereas the bone mineral density of the arms was higher after treatment, but again without the difference reaching statistical significance.