We study the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts model to noninteger q, in two and three spatial dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z >or= alpha/nu is close to but probably not sharp in d = 2 and is far from sharp in d = 3, for all q. The conjecture z >or= beta/nu is false (for some values of q) in both d = 2 and d = 3.