We show that the smallest module of Plasmodium falciparum AMA1 (PfAMA1) that can be expressed in the yeast Pichia pastoris while retaining the capacity to induce high levels of parasite-inhibitory antibodies comprises domains I and II. Based on this, two fusion proteins, differing in the order of the modules, were developed. Each comprised one module of PfAMA1 (FVO strain, amino acids [aa] 97 to 442) (module A) and one module of PfMSP1(19) (Wellcome strain, aa 1526 to 1621) (module Mm) in which a cystine had been removed to improve immune responses. Both fusion proteins retained the antigenicity of each component and yielded over 30 mg/liter purified protein under fed-batch fermentation. Rabbits immunized with purified fusion proteins MmA and AMm had up to eightfold-higher immune responses to MSP1(19) than those of rabbits immunized with module Mm alone or Mm mixed with module A. In terms of parasite growth inhibition, fusion did not diminish the induction of inhibitory antibodies compared with immunization with module A alone or module A mixed with module Mm, and fusion outperformed antibodies induced by immunization with module M or Mm alone. When tested against parasites expressing AMA1 heterologous to the immunogen, antibodies to the fusion proteins inhibited parasite growth to a greater extent than did antibodies either to the individual antigens or to the mixture. These results suggest that compared with the individual modules delivered separately or as a mixture, fusion proteins containing these two modules offer the potential for significant vaccine-related advantages in terms of ease of production, immunogenicity, and functionality.