In the search to detect genetic associations between complex traits and DNA variants, a practice is to select a subset of Single Nucleotide Polymorphisms (tag SNPs) in a gene or chromosomal region of interest. This allows study of untyped polymorphisms in this region through the phenomenon of linkage disequilibrium (LD). However, it is crucial in the analysis to utilize such multiple SNP markers efficiently. In this study, we present a robust testing approach (T(C)) that combines single marker association test statistics or p values. This combination is based on the summation of single test statistics or p values, giving greater weight to those with lower p values. We compared the powers of T(C) in identifying common trait loci, using tag SNPs within the same haplotype block that the trait loci reside, with competing published tests, in case-control settings. These competing tests included the Bonferroni procedure (T(B)), the simple permutation procedure (T(P)), the permutation procedure proposed by Hoh et al. (T(P-H)) and its revised version using 'deflated' statistics (T(P-H_def)), the traditional chi(2) procedure (T(CHI)), the regression procedure (Hotelling T(2) test) (T(R)) and the haplotype-based test (T(H)). Results of these comparisons show that our proposed combining procedure (T(C)) is preferred in all scenarios examined. We also apply this new test to a data set from a previously reported association study on airway responsiveness to methacholine.
(c) 2007 S. Karger AG, Basel