Focus splitting by using sector-sectioned phased arrays is one of effective methods to increase the necrosed volume in single sonication and to reduce the total treatment time in large tumor treatment. However, the split focus contains less concentrated energy and severer focal beam distortion, which limits its usefulness in practical treatments. In this study, we proposed a new heating strategy by combining sonications of strongly-focused and split-focused patterns to increase the heating efficiency. Theoretical predictions and ex-vivo tissue experiments showed that thermal lesions can be enlarged in dimensions after applying the proposed strategy. This may provide a useful way to solve current obstacles in low heating efficiency of split-focus sonications that attempted to shorten the total treatment time in current clinical application.