In the songbird brain, dehydroepiandrosterone (DHEA) is metabolized to the active and aromatizable androgen androstenedione (AE) by 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD). Thus, brain 3beta-HSD plays a key role in regulating the steroidal milieu of the nervous system. Previous studies have shown that stress rapidly regulates brain 3beta-HSD activity in a sex-specific manner. To elucidate endocrine regulation of brain 3beta-HSD, we asked whether 17beta-estradiol (E(2)) regulates DHEA metabolism in adult zebra finch (Taeniopygia guttata) and whether there are sex-specific effects. Brain tissue was homogenized and centrifuged to obtain supernatant lacking whole cells and cell nuclei. Supernatant was incubated with [(3)H]DHEA and radioinert E(2)in vitro. Within only 10 min, E(2) significantly reduced 3beta-HSD activity in both male and female brain. Interestingly, the rapid effects of E(2) were more pronounced in females than males. These are the first data to show a rapid effect of estrogens on the songbird brain and suggest that rapid estrogen effects differ between male and female brains.