Treatment options for chronic lymphocytic leukaemia (CLL) are limited and eventually fail because of the development of toxicities or drug resistance. Thus, identification of new therapeutic strategies and targets is a high priority. The semisynthetic geldanamycin derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) inhibits heat shock protein 90 (Hsp90) binding to client proteins, thereby leading to their degradation. We demonstrate that at biologically active and clinically attainable levels (1 mumol/l), 17-AAG treatment of CLL B cells in vitro causes modest apoptosis as well as decreased AKT protein levels. Given the potential activation of AKT following antibody therapy in CLL, we evaluated the combination of 17-AAG and rituximab. These agents produced synergistic cytotoxicity of CLL cells in vitro. However, rituximab-mediated antibody-dependent cellular cytotoxicity was modestly reduced with 17-AAG, and complement-dependent cytotoxicity was not altered. We conclude that the combination of Hsp90 inhibitors with therapeutic antibodies, such as rituximab may represent a novel strategy to enhance therapeutic response in CLL. Furthermore, our data indicates that AKT and Hsp70 protein levels are relevant pharmacodynamic endpoints to monitor the in vivo effect of 17-AAG therapy.