Three-dimensional scapular kinematics and scapulohumeral rhythm in patients with glenohumeral osteoarthritis or frozen shoulder

J Biomech. 2008;41(2):326-32. doi: 10.1016/j.jbiomech.2007.09.004. Epub 2007 Oct 18.

Abstract

We aimed to describe 3D scapular kinematics and scapulohumeral rhythm (SHR) in glenohumeral (GH) osteoarthritis shoulders compared to unaffected shoulders and to compare the abnormal scapular kinematic schema for GH osteoarthritis with that for frozen shoulder. Thirty-two patients with stiff shoulder (16 with GH osteoarthritis and 16 with frozen shoulder) performed maximal arm elevation in two planes, sagittal and frontal. Scapular rotations and humeral elevation of the affected and unaffected shoulders were measured by the Polhemus Fastrak electromagnetic system. Patients with GH osteoarthritis were older, had longer disease duration (p<0.001) and less restricted humeral elevation in the frontal plane (p=0.01). Protraction was significantly lower for the affected shoulders except for arm elevation in the frontal plane in the GH osteoarthritis group. Furthermore, protraction was lower with frozen shoulder than GH osteoarthritis during arm elevation in the frontal plane. Scapular lateral rotation and SHR were significantly higher for the affected shoulders in both groups whatever the plane of elevation. SHR showed a fair to moderate negative correlation with maximal humeral elevation in both groups and appears to be higher with frozen shoulder than GH osteoarthritis. In addition, SHR of the affected shoulder showed a fair to moderate correlation with disease duration only with GH osteoarthritis. Scapular tilt did not differ between affected and unaffected sides and was not influenced by type of disease. In conclusion, the increased scapular lateral rotation described in frozen shoulder is also observed in GH osteoarthritis. SHR of the affected shoulder is inversely related to severity of limitation of shoulder range of motion, which suggests a compensatory pattern.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biomechanical Phenomena / methods*
  • Computer Simulation
  • Female
  • Humans
  • Humerus / physiopathology*
  • Imaging, Three-Dimensional / methods
  • Male
  • Middle Aged
  • Models, Biological*
  • Osteoarthritis / physiopathology*
  • Range of Motion, Articular*
  • Scapula / physiopathology*
  • Shoulder Joint / physiopathology*