Here we report on the fabrication and characterization of ultra-thin nanocomposite layers used as gate dielectric in low-voltage and high-performance flexible organic thin film transistors (oTFTs). Reactive sputtered zirconia layers were deposited with low thermal exposure of the substrate and the resulting porous oxide films with high leakage currents were spin-coated with an additional layer of poly-alpha-methylstyrene (P alphaMS). After this treatment a strong improvement of the oTFT performance could be observed; leakage currents could be eliminated almost completely. In ellipsometric studies a higher refractive index of the ZrO(2)/P alphaMS layers compared to the "as sputtered" zirconia films could be detected without a significant enhancement of the film thickness. Atomic force microscopy (AFM) measurements of the surface topography clearly showed a surface smoothing after the P alphaMS coating. Further studies with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) also indicated that the polymer definitely did not form an extra layer. The polymer chains rather (self-)assemble in the nano-scaled interspaces of the porous oxide film giving an oxide-polymer "nanocomposite" with a high oxide filling grade resulting in high dielectric constants larger than 15. The dielectric strength of more than 1 MV cm(-1) is in good accordance with the polymer-filled interspaces.