Malignant pleural mesothelioma (MPM) is an aggressive tumor that arises from the pleura and frequently extends to adjacent structures. MPM cells produce and respond to many angiogenic factors, such as vascular endothelial growth factor (VEGF). VEGF expression in MPM is correlated with microvascular density, which is associated with poor survival. CT has been widely used as the primary imaging modality for the clinical evaluation of MPM. Major findings include nodular pleural thickening, unilateral pleural effusion, and tumor invasion of adjacent structures. CT tends to underestimate early chest wall invasion and peritoneal involvement and has well-known limitations in the evaluation of lymph node metastases. Perfusion CT can evaluate the microvasculature of tumors, while its disadvantages, such as high radiation exposure or side effects from iodinated contrast, limit its use in both research and clinical settings. MRI can provide additional information to CT. Because of its excellent contrast resolution, MRI is superior to CT, both in the differentiation of malignant from benign pleural disease, and in the assessment of chest wall and diaphragmatic involvement. Perfusion MRI is the most promising technique for the assessment of the tumor microvasculature. In MPM, therapeutic effects of chemotherapy can be monitored with perfusion MRI. It has been shown that FDG-PET is useful for the differentiation of benign from malignant lesions, for staging and monitoring metabolic response to therapy against MPM, and that it has prognostic value. An initial report on PET/CT imaging of MPM has shown increased accuracy of overall staging, improving the assessment of tumor resectability. PET/CT seems to be superior to other imaging modalities in detecting more extensive disease involvement, and identifying unsuspected occult distant metastases.