Zinc dependent metalloproteinases comprise a large family of structurally homologous enzymes with a wide variety of biological roles. Originally described as proteinases involved in extracellular matrix (ECM) catabolism, these enzymes were later found to serve major roles as initiators of signaling pathways in many aspects of biology, ranging from cell proliferation, differentiation and communication, to pathological states associated with tumor metastasis, inflammation, tissue degeneration and cell death. From these enzymes, the tumor necrosis factor-α converting enzyme (TACE) stands out as a central shedding activity mediating the regulated release of a host of cytokines, receptors and other cell surface molecules. Selective drugs targeted at blocking TACE for treatment of rheumatoid arthritis and other disease indications are highly sought. Yet, the structural and chemical knowledge underlying its enzymatic activity is very limited. This is in part due to the fact that the catalytic zinc atom of metalloproteinases is usually spectroscopically silent and hence difficult to study using conventional spectroscopic and analytical tools. Most structural and biochemical studies, as well as medicinal chemistry efforts carried out so far were limited to non-dynamic structure/function characterization. Thus, to date, our mechanistic knowledge comes from theoretical calculations derived from static crystal structures from family members that are highly similar in their amino acid sequence and three-dimensional structure.
This review introduces the importance of real-time quantification of biophysical properties and structural kinetic behavior applied to the study of TACE and other zinc metalloproteinases to dissect their molecular mechanisms. The molecular details that link the catalytic chemistry to key kinetic, electronic and structural events have remained elusive because of the difficulties associated with probing time-dependent structure-function aspects of enzymatic reactions. Here we discuss the use of conventional and real-time structural-spectroscopic tools to study the reactive metal site during catalysis, and initial lessons on the enzymatic mechanism that we are learning. Approaches such as the ones presented here may be useful in the design of specific inhibitors as drug candidates.