Different arbuscular mycorrhizal fungi (AMF) alter growth and nutrition of a given plant differently. Plant gene expression patterns in response to fungal colonization show a certain overlap when colonized by fungi of the Glomeraceae. However, little is known of plant responses to fungi of different fungal taxa, e.g. the Gigasporaceae. We therefore compared the impact of colonization by three taxonomically different AMF species (Glomus intraradices, Glomus mosseae and Scutellospora castanea) on Medicago truncatula at the physiological and transcriptional level using quantitative-PCR. Each AMF developed a species-typical colonization pattern, with a colonization degree of 60% for G. intraradices and 30% for G. mosseae. Both species developed appressoria, intraradical hyphae, arbuscules and vesicles. S. castanea showed a colonization degree of 10% and developed appressoria, intraradical hyphae, arbuscules and arbusculate coils. All AMF enhanced the plant biomass accumulation and nutritional status although not in correlation with the colonization degree. The expression of 10 mycorrhiza-specific or mycorrhiza-associated plant genes could be separated into two clusters. The first cluster, containing arbuscule-induced genes, was highly induced in interactions with G. intraradices and G. mosseae but also slightly induced by S. castanea. The second cluster of genes contained genes that were induced primarily by S. castanea. In conclusion, genes that respond to colonization by fungi of the genus Glomus also respond to Scutellospora. However, there is also a group of genes that is significantly induced only by Scutellospora and not by Glomus species in this study. Our data indicate that genes may be differentially regulated in response to the different AM fungi.