Metal resonators can significantly extend the scope of nanoelectromechanical systems (NEMS) through access to a broader range of electrical, thermal, and surface properties. The material behavior of template-electrodeposited gold (Au) and rhodium (Rh) nanowires (NWs) and their performance as resonators was investigated. Nanowire integration by a bottom-up assembly scheme enabled creation of fixed-free metal beams without distortion or tension. Surprisingly, even a soft metal such as Au yielded viable nanocantilever resonators, with Q-factors of 600-950 in high vacuum, while stiffer RhNW had Q-factors of 1100-1300. NWs with diameter approximately 300 nm yield Young's modulus values of 44 +/- 12 GPa for Au and 222 +/- 70 GPa for Rh, both lower than bulk values. This observation is in agreement with two other measurement techniques.