Aims: We previously reported that the blood-brain barrier (BBB) function was deteriorated in vessels located along hippocampal fissures in stroke-prone spontaneously hypertensive rats (SHRSP). In this study, we examined changes of gene expression in the BBB-damaged vessels of SHRSP.
Methods: Vascular samples were microdissected from the hippocampi of SHRSP and Wistar-Kyoto (WKY) as a control and the difference in gene expression between the BBB-damaged vessels in SHRSP and vessels without BBB damage in WKY was examined by a microarray. The differences in gene and protein expression between brain tissues in the two strains of rats were examined using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry.
Results: The microarray assay revealed that the ratio of osteopontin gene expression in the vascular tissue of the hippocampi of SHRSP to that of WKY was the highest among 8435 genes. Real-time RT-PCR analysis revealed that the gene expression of osteopontin was significantly increased in the hippocampal samples of SHRSP compared with that in the hippocampal samples of WKY rats or with that in the cortical samples of SHRSP. Immunohistochemical and Western blot analyses showed that the osteopontin protein expression was seen in perivascular ED1-positive macrophages/microglial cells located around hippocampal fissures and significantly increased in the hippocampi of SHRSP compared with that of WKY.
Conclusions: These findings indicate that the expression of osteopontin is increased in BBB-damaged vessels in hypertensive SHRSP compared with that in vessels without BBB impairment in WKY rats, suggesting a role for osteopontin in BBB function.