With incubation test, this paper studied the characteristics of organic C and N mineralization in 0-10 cm soil layer under three forest types, i. e., pine (Pinus massoniana) forest (PMF), pine and broad-leaved mixed forest (PBMF) and monsoon evergreen broad-leaved forest (MEBF), which were in a successional series in Dinghushan Mountain of Southern China. The results showed that after incubation for 52 weeks, the cumulative emission of CO2-C from PMF, PBMF and MEBF soil was 30.66 +/- 3.36, 58.17 +/- 7.25 and 59.31 +/- 13.58 mg x kg(-1), respectively, and 64.12%, 64.41% and 65.12% of which were released in the first 9 weeks. The cumulative emission of CO2-C was always significantly smaller from PMF soil than from PBMF and MEBF soils, and its change pattern over time fitted well with a two-pool kinetic model. The parameters based on the model implicated that the mineralization rates of soil labile and recalcitrant organic carbon tended to decrease with the forest type changing from PMF to PBMF and MEBF. The cumulative amount of CH4 after 52 weeks incubation and the net production of available N and nitrate after 20 weeks incubation were significantly higher in MEBF soil than in PBMF soil, and also, in PBMF soil than in PMF soil. NO3(-) -N was the dominant form in net available N production. The change in soil organic carbon mineralization rate caused by forest type change was an inherent way to affect soil organic carbon content.