Me-Hg and PCB153 are known neurotoxic contaminants which tend to accumulate in food, particularly in fish. Aim of this study was to perform asynchronous and combined exposure to Me-Hg and PCB153 in a neuronal rat cell line (PC12) to better characterise the antagonism observed at some combination concentrations. PC12 cells were treated with three concentrations of Me-Hg (0.1-0.5-1.0 microM) and PCB153 at one concentration (175 microM) in single and combined asynchronous exposures, using viability (MTT assay) as end-point. At all concentrations used, a statistically significant antagonistic effect was observed when Me-Hg preceded PCB153 exposure, while effect was additive when PCB153 preceded Me-Hg exposure. The antagonism is particularly evident at low concentrations of Me-Hg (0.1 microM). In conclusion, combined asynchronous exposure showed that whereas Me-Hg can modulate PCB153 toxicity, the opposite seems not to be true. Therefore, the use of asynchronous exposure could be a promising approach to study the mechanisms of toxicity of binary mixtures.