Secondary tumors and leukemias are major complications in Hodgkin lymphoma (HL). They likely arise from clonal selection of cells that have accumulated genomic lesions induced by chemo- and radiotherapy and may be further promoted by the loss of DNA repair and/or other pathways ensuring the fidelity of replicated DNA. To distinguish genomic imbalances associated with the development of acute myeloid leukemia (AML) in HL we used an array-based comparative genomic hybridization (aCGH) strategy on whole lymph node biopsies of HL patient. Genomic imbalances (amplifications and deletions) associated with AML outcome in 3 classic HL patients, at clinical diagnosis they exhibited a discrete individual variability. Three amplifications and 5 deletions were shared by all 3 patients. They involved AFM137XA11, a 9p11.2 pericentric region; FGFR1, the FGF receptor most frequently translocated in AML; PPARBP, a co-activator of nuclear receptors RARalpha, RXR and TRbeta1; AFM217YD10, a 17q25 telomeric region; FGR, an SRC2 kinase involved in cytokine production by NK and CD4+ NKT cells; GATA3, a Th2-specific transcription factor; TOP1, involved in DNA recombination and repair; WT1, a transcription factor involved in CD8+ T cell response against leukaemic blasts. Immunohistochemistry confirmed aCGH results and distinguished the distribution of either amplified or deleted gene products in neoplastic Reed Sternberg (RS) cells and non-neoplastic lymph node components.