Delineating genetic relationships among the Maya

Am J Phys Anthropol. 2008 Mar;135(3):329-47. doi: 10.1002/ajpa.20746.

Abstract

By 250 AD, the Classic Maya had become the most advanced civilization within the New World, possessing the only well-developed hieroglyphic writing system of the time and an advanced knowledge of mathematics, astronomy and architecture. Though only ruins of the empire remain, 7.5 million Mayan descendants still occupy areas of Mexico, Guatemala, Belize, El Salvador, and Honduras. Although they inhabit distant and distinct territories, speak more than 28 languages, and have been historically divided by warfare and a city-state-like political system, and they share characteristics such as rituals, artistic, architectural motifs that distinguish them as unequivocally Maya. This study was undertaken to determine whether these similarities among Mayan communities mirror genetic affinities or are merely a reflection of their common culture. Four Mayan populations were investigated (i.e., the K'iche and Kakchikel from Guatemala and the Campeche and Yucatan from Mexico) and compared with previously published populations across 15 autosomal STR loci. As a whole, the Maya emerge as a distinct group within Mesoamerica, indicating that they are more similar to each other than to other Mesoamerican groups. The data suggest that although geographic and political boundaries existed among Mayan communities, genetic exchanges between the different Mayan groups have occurred, supporting theories of extensive trading throughout the empire.

MeSH terms

  • Alleles
  • Central America
  • Cultural Characteristics*
  • DNA / analysis
  • Genetics, Population
  • Humans
  • Indians, Central American / genetics*
  • Population Dynamics*

Substances

  • DNA