Human essential hypertension is a complex polygenic trait with underlying genetic components that remain unknown. The spontaneously hypertensive rat (SHR) is a well-characterized experimental model for essential hypertension. By comparative proteomics, we previously identified glutathione S-transferase, mu 2 (GSTM2), a protein involved in detoxification of reactive oxygen species, which had a significant reduction in left ventricles of 16-week-old SHR compared with WKY rats. In parallel, Western blotting and RT-PCR showed a similar reduction of GSTM2 in left ventricles and aortas of 4-, 8-, and 16-week-old SHR, which is before the onset of hypertension. This suggests that differential expression is not attributable to long-term changes in blood pressure. Meanwhile, the activities of GSTM2 were significantly decreased in different ages old SHR. Conversely, there was an enhanced generation of superoxide anion and activation of NADPH oxidase in SHR, which was accompanied by an increase in the protein expression of p47phox, a subunit of NADPH oxidase. These data suggest that it maybe a reduction in antioxidant defenses, evident by a reduced expression and activity of GSTM2, in the left ventricles and aortas of SHR that leads to increased levels of superoxide anion and activation of NADPH oxidase.