One of the most important outcomes of organic nanotechnologies could be development of well-integrated systems for sensing of particular chemical species. Use of color indicators is an attractive approach to guest reporting. Of the known chromophores, porphyrin and its derivatives are the most widely studied functional chromophores in a diverse range of research fields. In this review, recent developments in colorimetric indicator functions of porphyrin derivatives and related compounds in their molecular and nano-architectures are reviewed according to the classification: (i) rather simple porphyrin derivatives, (ii) porphyrin conjugates, (iii) porphyrins embedded in bulk materials, and (iv) porphyrins in organized films. Porphyrin derivatives with unusual structures, such as expanded and N-confused ones have been used for color indicators in specific cases. Electron and energy transfers in porphyrins conjugated with other functional moieties resulted in dynamic sensing systems including switch-on and switch-off actions. Immobilization of porphyrin color indicators in appropriate matrices is important for practical applications. Use of supramolecular films such as self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies as porphyrin nanoarchitectures often offers opportunities for colorimetric outputs based on control of their aggregate structures.