Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined

Plant Physiol. 2008 Jan;146(1):289-99. doi: 10.1104/pp.107.109942. Epub 2007 Nov 16.

Abstract

ADP-glucose (Glc) pyrophosphorylase (AGPase), a key regulatory enzyme in starch biosynthesis, is highly regulated. Transgenic approaches in four plant species showed that alterations in either thermal stability or allosteric modulation increase starch synthesis. Here, we show that the classic regulators 3-phosphoglyceric acid (3-PGA) and inorganic phosphate (Pi) stabilize maize (Zea mays) endosperm AGPase to thermal inactivation. In addition, we show that glycerol phosphate and ribose-5-P increase the catalytic activity of maize AGPase to the same extent as the activator 3-PGA, albeit with higher K(a) (activation constant) values. Activation by fructose-6-P and Glc-6-P is comparable to that of 3-PGA. The reactants ATP and ADP-Glc, but not Glc-1-P and pyrophosphate, protect AGPase from thermal inactivation, a result consistent with the ordered kinetic mechanism reported for other AGPases. 3-PGA acts synergistically with both ATP and ADP-Glc in heat protection, decreasing the substrate concentration needed for protection and increasing the extent of protection. Characterization of a series of activators and inhibitors suggests that they all bind at the same site or at mutually exclusive sites. Pi, the classic "inhibitor" of AGPase, binds to the enzyme in the absence of other metabolites, as determined by thermal protections experiments, but does not inhibit activity. Rather, Pi acts by displacing bound activators and returning the enzyme to its activity in their absence. Finally, we show from thermal inactivation studies that the enzyme exists in two forms that have significantly different stabilities and do not interconvert rapidly.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Allosteric Regulation
  • Enzyme Activation
  • Enzyme Stability
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression Regulation, Plant
  • Glucose-1-Phosphate Adenylyltransferase / antagonists & inhibitors
  • Glucose-1-Phosphate Adenylyltransferase / chemistry*
  • Glucose-1-Phosphate Adenylyltransferase / metabolism
  • Glyceric Acids / metabolism
  • Hot Temperature
  • Phosphorus / metabolism
  • Plant Proteins / metabolism
  • Protein Binding
  • Zea mays / enzymology*

Substances

  • Glyceric Acids
  • Plant Proteins
  • Phosphorus
  • Glucose-1-Phosphate Adenylyltransferase