It was the aim of the study to verify dose delivered in urethra and rectum during High Dose Rate brachytherapy boost (HDRBB) of prostate cancer patients. During the first fraction of HDRBB measurement catheters were placed in the urethra and rectum of prostate cancer patients. These contained LiF:Mg,Ti Thermoluminescence Dosimetry (TLD) rods of 1 mm diameter, with up to 11 detectors positioned every 16 mm separated by radio-opaque markers. A Lorentzian peak function was used to fit the data. Measurements from 50 patients were evaluated and measured doses were compared with predictions from the treatment planning system (Plato Vs 13.5 to 14.1). Prospective urinary and rectal toxicity scores were collected following treatment. In more than 90% of cases, the Lorentzian peak function provided a good fit to both experimental and planning urethral data (r2 > 0.9). In general there was good agreement between measured and predicted doses with the average difference between measured and planned maximum dose being 0.1 Gy. No significant association between dose and any clinical endpoints was observed in 43 patients available for clinical evaluation. An average inferior shift of 2 mm between the plan and the measurement performed approximately 1 hour after the planning CT scan was found for the dose distribution in the cohort of patients for the urethra measurements. Rectal measurements proved to be more difficult to interpret as there is more variability of TLD position between planning and treatment. TLD in-vivo measurements are easily performed in urethra and rectum during HDR brachytherapy of prostate patients. They verify the delivery and provide information about the dose delivered to critical structures. The latter may be of particular interest if higher doses are to be given per fraction such as in HDR monotherapy.