This paper describes a novel image-based method for tracking robotic mechanisms and interventional devices during Magnetic Resonance Image (MRI)-guided procedures. It takes advantage of the multi-planar imaging capabilities of MRI to optimally image a set of localizing fiducials for passive motion tracking in the image coordinate frame. The imaging system is servoed to adaptively position the scan plane based on automatic detection and localization of fiducial artifacts directly from the acquired image stream. This closed-loop control system has been implemented using an open-source software framework and currently operates with GE MRI scanners. Accuracy and performance were evaluated in experiments, the results of which are presented here.