Shape registration by simultaneously optimizing representation and transformation

Med Image Comput Comput Assist Interv. 2007;10(Pt 2):809-17. doi: 10.1007/978-3-540-75759-7_98.

Abstract

This paper proposes a novel approach that achieves shape registration by optimizing shape representation and transformation simultaneously, which are modeled by a constrained Gaussian Mixture Model (GMM) and a regularized thin plate spline respectively. The problem is formulated within a Bayesian framework and solved by an expectation-maximum (EM) algorithm. Compared with the popular methods based on landmarks-sliding, its advantages include: (1) It can naturally deal with shapes of complex topologies and 3D dimension; (2) It is more robust against data noise; (3) The registration performance is better in terms of the generalization error of the resultant statistical shape model. These are demonstrated on both synthetic and biomedical shapes.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*