We report the discovery of a duplication of the growth hormone (GH) gene in a major group of birds, the passerines (Aves: Passeriformes). Phylogenetic analysis of 1.3-kb partial DNA sequences of GH genes for 24 species of passerines and numerous outgroups indicates that the duplication occurred in the ancestral lineage of extant passerines. Both duplicates and their open-reading frames are preserved throughout the passerine clade, and both duplicates are expressed in the zebra finch brain, suggesting that both are likely to be functional. The estimated rates of amino acid evolution are more than 10-fold higher in passerine GH genes than in those of their closest nonpasserine relatives. In addition, although the 84 codons sequenced are generally highly conserved for both passerines and nonpasserines, comparisons of the nonsynonymous/synonymous substitution ratios and the rate of predicted amino acid changes indicate that the 2 gene duplicates are evolving under different selective pressures and may be functionally divergent. The evidence of differential selection, coupled with the preservation of both gene copies in all major lineages since the origin of passerines, suggests that the duplication may be of adaptive significance, with possible implications for the explosive diversification of the passerine clade.