Electronic structure and photoionization and dissociation processes of bis(trifluoromethoxy)disulfurylperoxide, CF3OS(O)2OOS(O)2OCF3

J Phys Chem A. 2007 Dec 27;111(51):13425-31. doi: 10.1021/jp0753326. Epub 2007 Dec 5.

Abstract

In this work, we present a complete study of the photoionization and dissociation processes for bis(trifluoromethoxy)disulfurylperoxide, CF3OS(O)2OOS(O)2OCF3, which was generated by UV photolysis of a mixture of (CF3CO)2O, SO2, and O2 at a low temperature. The reaction product was detected and characterized by the photoelectron (PE) and photoionization mass spectroscopy (PIMS). For comparison, the geometric and electronic structures of CF3S(O)2OS(O)2CF3 (a), CF3OS(O)2OS(O)2OCF3 (b), and CF3OS(O)2OOS(O)2OCF3 (c) were investigated by the combination of experiments and theoretical studies. The PES results show that the outer electrons residing in nO(S=O) of b and c are more tightly bound than those of a. It is worthwhile mentioning that drastic changes occur in the geometry of c after one-electron ionization. The neutral molecule exhibits a gauche structure with the SOOS dihedral angle of 124.4 degrees . The first ionization process happens on the O-O antibonding orbital. The remarkable geometric changes between the ground-state molecule and cation are computed to be the gauche-to-trans rotation of deltaSOOS and the prolongation of the S1-O1 single bond length. According to the calculated bond dissociation energies, the dissociation process was discussed. The calculated results indicate that once the parent ion is formed, the dissociation of the S1-O1 bond to form CF3OSO2+ is inevitable.