Blockade of CD40-CD40 ligand (CD40L) costimulation has been shown to synergize with that of CTLA4/CD28-B7 to promote transplant tolerance. To date, however, CD28-B7 interactions have been prevented using B7-blocking reagents like CTLA4-Ig that inhibit CD28-B7 together with CTLA4-B7 interactions. In this study, we have tested anti-CD28 Abs to prevent selectively CD28-B7 interactions while preserving CTLA4-B7 in addition to CD40-CD40L blockade. In the LEW.1W to LEW.1A rat combination, interfering with CD40-CD40L interactions by CD40Ig administration through gene transfer resulted in indefinite heart allograft survival due to the appearance of clonotypic CD8+CD45RClow regulatory T cells that were capable of transferring the tolerant state to naive animals. However, cardiac transplants in these recipients systematically developed chronic rejection lesions. Whereas anti-CD28 Ab monotherapy only delayed acute rejection and failed to induce tolerance, coadministration of anti-CD28 Abs and CD40Ig resulted in the long-term acceptation of allografts without chronic rejection lesions in 60% of the recipients, reduced the level of intragraft mRNA transcripts for cytokines and immune factors, and fully abrogated alloantibody production. In addition, the nature of regulatory cells was modified: the CD8+CD45RClow clonotypic T cells described in the CD40Ig-treated animals could not be found in cotreated animals, and the other CD8+CD45RClow cells had no regulatory activity and a different cytokine expression profile. Instead, in cotreated recipients we found IDO-dependent non-T cells with regulatory activity in vitro. Thus, the addition of a short-term anti-CD28 treatment with CD40Ig resulted in decreased heart allograft chronic rejection lesions, complete inhibition of Ab production, and modified regulatory mechanisms.