Nm23-H1 homologs suppress tumor cell motility and anchorage independent growth

Clin Exp Metastasis. 2008;25(2):131-8. doi: 10.1007/s10585-007-9128-0. Epub 2007 Dec 5.

Abstract

Nm23-H1 suppresses metastasis, as well as in vitro cell motility, invasion and anchorage independent growth, in a variety of cancer models. Eight human homologs of Nm23 have been identified that share 26-88% identity with the prototype Nm23-H1. Here, we examine the potential of its homologs, -H2, DR-, -H4 and -H5, to inhibit in vitro correlates of metastasis in two highly metastatic human cell lines, MDA-MB-435 and MDA-MB-231. The metastatic cells were transfected with mammalian expression constructs containing the genes encoding for Nm23-H1, -H2, DR-, -H4 and -H5 and the resultant transfectants were analyzed by Boyden chamber motility and soft agar colonization assays. Nm23-H1 suppressed motility by 3.3- and 1.5-fold in MDA-MB-435 and MDA-MB-231 cells, respectively and inhibited anchorage independent growth in soft agar by 2.9- and 1.9-fold, respectively. None of the -H1 homologs were capable of suppressing motility in MDA-MB-435 cells, but in MDA-MB-231 cells, -H2 inhibited motility by 3-fold upon overexpression. When anchorage independent growth was assessed, -H2, -H4 and -H5 suppressed growth from 1.2- to 2.0-fold in both cell lines. Given their ability to suppress anchorage independent growth, Nm23-H1 homologs -H2, -H4 and -H5 may have some capacity to suppress metastasis. Motility suppression appears to be cell context dependent, but sequence disparities between -H1/H2 and the other family members may reveal regions critical for this inhibitory phenotype. Similarly, sequence differences between DR-Nm23 and its homologs may be important for anchorage independent growth suppression.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Amino Acid Sequence
  • Cell Line, Tumor
  • Cell Movement / physiology*
  • Female
  • Humans
  • Molecular Sequence Data
  • NM23 Nucleoside Diphosphate Kinases / genetics
  • NM23 Nucleoside Diphosphate Kinases / physiology*
  • Neoplasm Metastasis / genetics*
  • Sequence Homology, Amino Acid
  • Transfection

Substances

  • NM23 Nucleoside Diphosphate Kinases
  • NME1 protein, human