5,5,6-Fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of beta-lactamases

Bioorg Med Chem. 2008 Feb 15;16(4):1890-902. doi: 10.1016/j.bmc.2007.11.006. Epub 2007 Nov 5.

Abstract

Beta-lactamases are serine- and metal-dependent hydrolases, produced by the bacteria as defense against beta-lactam antibiotics. Commercially available inhibitors such as clavulanic acid, sulbactam, and tazobactam, which are currently used in the hospital settings, have reduced activity against newly emerging beta-lactamases. Bacterial production of diverse beta-lactamases including class-A, class-C, and ESBLs has motivated several research groups to search for inhibitors with a broader spectrum of activity. Previously, several novel 6-methylidene penems bearing, [5,5] [5,6] and [5,5,5] heterocycles have been synthesized in our laboratory and were shown to be potent and broad-spectrum beta-lactamase inhibitors. As a continuation of our previous work and in order to extend the structure-activity relationships, in this paper, we describe herein the synthesis and in vitro, in vivo activities of several novel 5,5,6-fused tricyclic heterocycles attached to the 6-methylidene penem core. The compounds presented in the current paper are potent and broad-spectrum inhibitors of the TEM-1 and AmpC beta-lactamases. In combination with piperacillin, their in vitro activities showed enhanced susceptibility to class A- and C-resistant strains studied in various bacteria. Some of the newly synthesized compounds such as 12a-c were shown to have in vivo activity in the acute lethal infection model against TEM-1 producing organisms. The 5,5,6-fused heterocyclic ring cores such as 21, 25, and 35 reported here are hitherto unknown in the literature.

MeSH terms

  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins / antagonists & inhibitors
  • Heterocyclic Compounds, 3-Ring / chemistry
  • Heterocyclic Compounds, 3-Ring / pharmacology*
  • Imidazoles / chemistry
  • Imidazoles / pharmacology
  • Lactams / chemistry
  • Lactams / pharmacology*
  • Microbial Sensitivity Tests
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology
  • Structure-Activity Relationship
  • beta-Lactamase Inhibitors*
  • beta-Lactamases

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Heterocyclic Compounds, 3-Ring
  • Imidazoles
  • Lactams
  • Pyrazoles
  • beta-Lactamase Inhibitors
  • pyrazole
  • imidazole
  • AmpC beta-lactamases
  • beta-Lactamases